Feature selection for unsupervised learning applied to content-based image retrieval

This thesis explores the feature selection for unsupervised learning problem. We investigate the problem through our algorithm called FSSEM (Feature Subset Selection wrapped around Expectation-Maximization clustering) and through two different performance criteria for evaluating candidate feature su...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsman: Dy, Jennifer Guani (Författare, medförfattare)
Materialtyp: Electronic Resource
Språk:English
Publicerad: Ann Arbor Michigan ProQuest Information and Learning Company [2002]
Ämnen:
Länkar:Full text access requires UP Webmail login