Feature selection for unsupervised learning applied to content-based image retrieval

This thesis explores the feature selection for unsupervised learning problem. We investigate the problem through our algorithm called FSSEM (Feature Subset Selection wrapped around Expectation-Maximization clustering) and through two different performance criteria for evaluating candidate feature su...

Celý popis

Podrobná bibliografie
Hlavní autor: Dy, Jennifer Guani (Autor)
Médium: Electronic Resource
Jazyk:English
Vydáno: Ann Arbor Michigan ProQuest Information and Learning Company [2002]
Témata:
On-line přístup:Full text access requires UP Webmail login