Feature selection for unsupervised learning applied to content-based image retrieval

This thesis explores the feature selection for unsupervised learning problem. We investigate the problem through our algorithm called FSSEM (Feature Subset Selection wrapped around Expectation-Maximization clustering) and through two different performance criteria for evaluating candidate feature su...

Полное описание

Библиографические подробности
Главный автор: Dy, Jennifer Guani (Автор)
Формат: Electronic Resource
Язык:English
Опубликовано: Ann Arbor Michigan ProQuest Information and Learning Company [2002]
Предметы:
Online-ссылка:Full text access requires UP Webmail login