Feature selection for unsupervised learning applied to content-based image retrieval

This thesis explores the feature selection for unsupervised learning problem. We investigate the problem through our algorithm called FSSEM (Feature Subset Selection wrapped around Expectation-Maximization clustering) and through two different performance criteria for evaluating candidate feature su...

Descripció completa

Dades bibliogràfiques
Autor principal: Dy, Jennifer Guani (Autor)
Format: Electronic Resource
Idioma:English
Publicat: Ann Arbor Michigan ProQuest Information and Learning Company [2002]
Matèries:
Accés en línia:Full text access requires UP Webmail login