Nonlinear dynamic data reconciliation and bias estimation of process measurements in an adiabatic stirred-tank reactor

When process data is taken from the sensors of a plant, errors of varying degrees are inherent. Measured variables will most likely violate dynamic process models. Because of this, large volumes of data may be unreliable for process control, monitoring, and optimization. This paper describes a new m...

Descrizione completa

Dettagli Bibliografici
Pubblicato in:Philippine Engineering Journal 37, 2 (2016(D)).
Autore principale: Pilario, Karl Ezra S.
Altri autori: Munoz, Jose Co
Natura: Articolo
Lingua:English
Soggetti:
Accesso online:Also available online for University of the Philippines Diliman. Click here