Nonlinear dynamic data reconciliation and bias estimation of process measurements in an adiabatic stirred-tank reactor

When process data is taken from the sensors of a plant, errors of varying degrees are inherent. Measured variables will most likely violate dynamic process models. Because of this, large volumes of data may be unreliable for process control, monitoring, and optimization. This paper describes a new m...

תיאור מלא

מידע ביבליוגרפי
הוצא לאור ב:Philippine Engineering Journal 37, 2 (2016(D)).
מחבר ראשי: Pilario, Karl Ezra S.
מחברים אחרים: Munoz, Jose Co
פורמט: Article
שפה:English
נושאים:
גישה מקוונת:Also available online for University of the Philippines Diliman. Click here