Nonlinear dynamic data reconciliation and bias estimation of process measurements in an adiabatic stirred-tank reactor

When process data is taken from the sensors of a plant, errors of varying degrees are inherent. Measured variables will most likely violate dynamic process models. Because of this, large volumes of data may be unreliable for process control, monitoring, and optimization. This paper describes a new m...

Fuld beskrivelse

Bibliografiske detaljer
Udgivet i:Philippine Engineering Journal 37, 2 (2016(D)).
Hovedforfatter: Pilario, Karl Ezra S.
Andre forfattere: Munoz, Jose Co
Format: Article
Sprog:English
Fag:
Online adgang:Also available online for University of the Philippines Diliman. Click here