Variational methods for machine learning with applications to deep networks
This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends i...
| Päätekijät: | , , , |
|---|---|
| Aineistotyyppi: | Electronic Resource |
| Kieli: | English |
| Julkaistu: |
Switzerland
Springer
[2021]
|
| Aiheet: | |
| Linkit: | https://link-springer-com.ezproxy.engglib.upd.edu.ph/book/10.1007/978-3-030-70679-1 https://doi.org/10.1007/978-3-030-70679-1 |


