Rainfall-induced shallow landslide volume estimation using robust empirical-statistical models

Volume is a vital factor in landslide assessments. To estimate the parameter in the immediate aftermath of the disaster, empirical-statistical models are generated for landslide inventory of Ormoc, Leyte. With the dataset from UP NOAH, the parameters - volume, surface area, and maximum elevation - a...

Full description

Bibliographic Details
Main Author: Seray, Franco (Author)
Other Authors: Ventura, Giancarlo P. (faculty adviser.), Victor, Jaime Angelo S. (co-adviser.)
Resource Type: Thesis
Language:English
Subjects:
LEADER 01920ctm a22003614i 4500
001 UP-99796217612935560
003 Buklod
005 20230215105418.0
006 aa grm 000 0
007 ta
008 190107s xx d r |||| u|
035 |a (iLib)UPD-00397766041 
040 |a DENGII  |e rda 
041 |a eng 
042 |a DMLUC 
090 |a LG 993.5 2017 E63  |b S47 
100 1 |a Seray, Franco  |e author. 
245 1 0 |a Rainfall-induced shallow landslide volume estimation using robust empirical-statistical models  |c Franco Seray ; Giancarlo P. Ventura, faculty adviser ; Jaime Angelo S. Victor, co-adviser. 
264 3 |a Quezon City  |b College of Engineering, University of the Philippines Diliman  |c 2017. 
300 |a viii, 54 leaves  |b illustrations (some color)  |c 28 cm. 
336 |a text  |2 rdacontent 
337 |a unmediated  |2 rdamedia 
338 |a volume  |2 rdacarrier 
502 |a Thesis (Bachelor of Science in Civil Engineering)--University of the Philippines Diliman  |d June 2017. 
520 3 |a Volume is a vital factor in landslide assessments. To estimate the parameter in the immediate aftermath of the disaster, empirical-statistical models are generated for landslide inventory of Ormoc, Leyte. With the dataset from UP NOAH, the parameters - volume, surface area, and maximum elevation - are derived from digital elevation models ASTER of NASA, and SAR of UP DREAM. Using robust linear regession to correlate data points, models are created and used for volume estimates with corresponding relative error from specified volume in the inventory. The inventory is found to be best estimated by the equation e7.1725x0.9341. 
650 0 |a Landslide hazard analysis. 
700 1 |a Ventura, Giancarlo P.  |e faculty adviser. 
700 1 |a Victor, Jaime Angelo S.  |e co-adviser. 
842 |a Thesis 
905 |a FI 
905 |a UP 
852 1 |a UPD  |b DENG-II  |h LG 993.5 2017 E63  |i S47 
942 |a Thesis