Nonlinear data reconciliation with gross error detection and identification for steady-state and dynamic processes

Sensor measurements in a process network inherently contain random noise and/or gross errors. Thus, operational plant data should be pre-conditioned for process control, monitoring, and optimization. This work developed a strategy for nonlinear steady-state and nonlinear dynamic data reconciliation...

ver descrição completa

Detalhes bibliográficos
Autor principal: Pilario, Karl Ezra S. (Author)
Outros Autores: Muñoz, Jose C. (adviser.)
Formato: Thesis
Idioma:English
Publicado em: Quezon City College of Engineering, University of the Philippines Diliman 2015.
Assuntos:
Acesso em linha:Abstract