Nonlinear data reconciliation with gross error detection and identification for steady-state and dynamic processes

Sensor measurements in a process network inherently contain random noise and/or gross errors. Thus, operational plant data should be pre-conditioned for process control, monitoring, and optimization. This work developed a strategy for nonlinear steady-state and nonlinear dynamic data reconciliation...

Descrizione completa

Dettagli Bibliografici
Autore principale: Pilario, Karl Ezra S. (Autore)
Altri autori: Muñoz, Jose C. (adviser.)
Natura: Tesi
Lingua:English
Pubblicazione: Quezon City College of Engineering, University of the Philippines Diliman 2015.
Soggetti:
Accesso online:Abstract