An introduction to hopf algebras

The study of Hopf algebras spans many fields in mathematics including topology, algebraic geometry, algebraic number theory, Galois module theory, cohomology of groups, and formal groups and has wide-ranging  connections to fields from theoretical physics to computer science. This text is unique in...

Full description

Bibliographic Details
Main Author: Underwood, Robert G.
Corporate Author: SpringerLink (Onlin
Resource Type: Electronic Resource
Language:English
Published: New York Springer c2011.
Subjects:
Online Access:Available for University of the Philippines Diliman via SpringerLink. Click here to access
LEADER 03149cmm a22003734a 4500
001 UP-99796217611212083
003 Buklod
005 20230215085534.0
006 m o u
007 cr |||||||||||
008 110827s2011 xxu u | eng d
020 |a 9780387727660 (eBook) 
020 |a 0387727663 (eBook) 
035 |a (iLib)UPD-00214608240 
040 |a DLC  |d DML 
041 0 |a eng 
042 |a DMLUC 
084 |a QA 613.8  |b U53 2011eb 
100 1 |a Underwood, Robert G.  |q (Robert Gene) 
245 1 0 |a An introduction to hopf algebras  |h [electronic resource]  |c Robert G. Underwood. 
264 1 |a New York  |b Springer  |c c2011. 
300 |a 1 online resource (xiv, 273 p.) 
505 0 |a Preface -- Some Notation -- 1. The Spectrum of a Ring.-2. The Zariski Topology on the Spectrum.-3. Representable Group Functors.-4. Hopf Algebras. -5. Larson Orders.-6. Formal Group Hopf Orders.-7. Hopf Orders in KC_p.-8. Hopf Orders in KC_{p^2}.-9. Hopf Orders in KC_{p^3}.-10. Hopf Orders and Galois Module Theory.-11. The Class Group of a Hopf Order.-12. Open Questions and Research Problems.-Bibliography.-Index. 
506 |a IP-based subscription, access limited to within on-campus computer network.  |c Access via Electronic Resources of the UPD University Library Website. 
520 |a The study of Hopf algebras spans many fields in mathematics including topology, algebraic geometry, algebraic number theory, Galois module theory, cohomology of groups, and formal groups and has wide-ranging  connections to fields from theoretical physics to computer science. This text is unique in making this engaging subject accessible to advanced graduate and beginning graduate students and focuses on applications of Hopf algebras to algebraic number theory and Galois  module theory, providing a smooth transition from modern algebra to Hopf algebras. After providing an introduction to the spectrum of a ring and the Zariski topology, the text treats presheaves, sheaves, and representable group functors.  In this way the student transitions smoothly from basic algebraic geometry to Hopf algebras.  The importance of Hopf orders is underscored with applications to algebraic number theory, Galois module theory and the theory of formal groups. By the end of the book, readers will be familiar with established results in the field and ready to pose research questions of their own. An exercise set is included in each of twelve chapters with questions ranging in difficulty. Open problems and research questions are presented in the last chapter. Prerequisites include an understanding of the  material on groups, rings, and fields normally covered in a basic course in moder 
533 |a Electronic reproduction.  |b New York  |c SpringerLink  |d 2011.  |n Available via World Wide Web through Spr 
650 0 |a Hopf. 
650 0 |a Electro. 
710 2 |a SpringerLink (Onlin. 
842 |a Electroni 
856 4 0 |y Available for University of the Philippines Diliman via SpringerLink. Click here to access  |u http://link.springer.com/book/10.1007/978-0-3 
950 |a xR-3792eb## 
852 1 |a UPD  |b DMLR 
942 |a Electronic Resource